

Android Application Testing Guide

Diego Torres Milano

Chapter No.1

"Getting Started with Testing"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.1 "Getting Started with Testing"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Diego Torres Milano has been involved with the Android platform since its inception,

at the end of 2007, when he started exploring and researching the platform possibilities,

mainly in the areas of User Interfaces, Unit and Acceptance Tests, and

Test Driven Development.

This is reflected by a number of articles mainly published in his personal

blog (http://dtmilano.blogspot.com) and his participation as a lecturer in some

conferences and courses like Mobile Dev Camp 2008 in Amsterdam (Netherlands) and

Japan Linux Symposium 2009 (Tokyo), Droidcon London 2009, Skillsmatter 2009

(London, UK), and he has also authored Android training courses delivered to various

companies in Europe.

Previously, he was the founder and developer of several Open Source projects, mainly

CULT Universal Linux Thin Project (cult-thinclient.sf.net) and the very

successful PXES Universal Linux Thin Client project (that was later acquired by 2X

Software, www.2x.com). PXES is a Linux-based Operating System specialized for thin

clients used by hundreds of thousands of thin clients all over the world. This project has a

popularity peak of 35M hits and 400K downloads from SourceForge in 2005. This

project had a dual impact: big companies in Europe decided to use it because of improved

security and efficiency; organizations, institutions, and schools in some developing

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

countries in South America, Africa, and Asia decided to use it because of the minimal

hardware requirements to have a huge social impact providing computers, sometimes

recycled ones, to everyone.

Among the other Open Source projects that he has founded we can mention Autoglade,

Gnome-tla, JGlade, and he has been contributing to various Linux distributions such as

RedHat, Fedora, and Ubuntu.

He also has been giving presentations in Linux World, LinuxTag, GUADEC ES,

University of Buenos Aires, and so on.

He has been developing software, participating in Open Source projects, and advising

companies worldwide for more than 15 years.

He can be contacted at dtmilano@gmail.com.

Firstly, I would like to thank my family: Laura, Augusto and Octavio for

their patience and consideration. The time I borrowed to achieve this

goal was mostly theirs.

Secondly I would like to thank my personal friend and IN3 Integracion

Informatica co-founder, Caludio Palonsky, with whom we started this

amazing adventure more than 15 years ago when we pioneered the

provision of Linux services and support to enterprises in South America.

He certainly taught me to be a bit more consultant and a bit less hacker

(but I'm a very bad student :-)). And special thanks to Ricston's Peter

Delia with whom we started providing Android training services

throughout Europe as early as mid 2008 when Android was just a

beautiful dream of having a mainstream Open Source operating system

in the mobile arena. This is now a reality dictated by the market.

And lastly I would like to thank all the reviewers and the Packt

Publishing team who gave me their opinion, suggestions, and corrections

on early manuscripts; without them the book would never have had the

quality it endowed.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Android Application Testing Guide
It doesn't matter how much time you invest in Android design, or even how careful you

are when programming, mistakes are inevitable and bugs will appear. This book will help

you minimize the impact of these errors in your Android project and increase your

development productivity. It will show you the problems that are easily avoided, to help

get you quickly to the testing stage.

Android Application Testing Guide is the first and only book providing a practical

introduction to the most commonly-available techniques, frameworks, and tools to

improve the development of your Android applications. Clear, step-by-step instructions

show how to write tests for your applications and assure quality control using various

methodologies.

The author's experience in applying application testing techniques to real-world projects

enables him to share insights on creating professional Android applications.

The book starts by introducing Test Driven Development, which is an agile component of

the software development process and a technique where you will tackle bugs early on.

From the most basic unit tests applied to a sample project to more sophisticated

performance tests, this book provides a detailed description of the most widely used

techniques in the Android testing world in a recipe-based approach.

The author has extensive experience of working on various development projects

throughout his professional career. All this research and knowledge has helped create a

book that will serve as a useful resource to any developer navigating the world of

Android testing.

What This Book Covers
Chapter 1, Getting Started with Testing introduces the different types of testing and their

applicability to software development projects in general and to Android in particular.

Chapter 2, Testing on Android covers testing on the Android platform, Unit testing and

JUnit, creating an Android Test project, and running tests.

Chapter 3, Building Blocks on the Android SDK starts digging a bit deeper to recognize

the building blocks available to create the tests. It covers Assertions, TouchUtils,

intended to test User Interfaces, Mock objects, Instrumentation, and TestCase class

hierarchies featuring UML diagrams.

Chapter 4, Test Driven Development introduces the Test Driven Development discipline.

It starts with a general revision and later on moves to the concepts and techniques closely

related to the Android platform. This is a code intensive chapter.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 5, Android Testing Environment provides different conditions to run the tests. It

starts with the creation of the Android Virtual Devices (AVD) to provide different

conditions and configurations for the application under test and runs the tests using the

available options. Finally, it introduces monkey as a way to generate simulated events

used for testing.

Chapter 6, Behavior Driven Development introduces Behavior Driven Development and

some concepts such as like the use of a common vocabulary to express the tests and the

inclusion of business participants in the software development project.

Chapter 7, Testing Recipes provides practical examples of different common situations

you will encounter applying the disciplines and techniques described before. The

examples are presented in a Cookbook style so you can adapt and use them for your

projects. The recipes cover Android Unit tests, Activities, Applications, Databases and

ContentProviders, Local and Remote Services, UIs, Exceptions, Parsers, and Memory

leaks.

Chapter 8, Continuous Integration introduces this agile technique for software

engineering that aims to improve the software quality and to reduce the time taken to

integrate changes by continuously applying integration and testing frequently.

Chapter 9, Performance Testing introduces a series of concepts related to benchmarking

and profiles from traditional logging statement methods to Creating Android performance

tests and using profiling tools. This chapter also presents Caliper to create

microbenchmarks.

Chapter 10, Alternative Testing Tactics covers building Android from source, code

coverage using EMMA, Robotium, testing on hosts, and Robolectric.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing
This chapter introduces the different types of testing and their applicability to
software development projects in general and to Android in particular.

We will avoid introductions to Android and the Open Handset Alliance
(http://www.openhandsetalliance.com) as they are covered in many books
already and I am inclined to believe that if you are reading a book covering this more
advanced topic you will have started with Android development before.

However, we will be reviewing the main concepts behind testing and the techniques,
frameworks, and tools available to deploy your testing strategy on Android.

Brief history
 Initially, when Android was introduced by the end of 2007, there was very little
support for testing on the platform, and for some of us very accustomed to using
testing as a component intimately coupled with the development process, it was time
to start developing some frameworks and tools to permit this approach.

 By that time Android had some rudimentary support for unit testing using JUnit
(http://www.JUnit.org), but it was not fully supported and even less documented.

In the process of writing my own library and tools, I discovered Phil Smith's Positron
(originally at http://code.google.com/p/android-positron and now renamed
and moved to http://code.google.com/p/autoandroid), an Open Source library
and a very suitable alternative to support testing on Android, so I decided to extend
his excellent work and bring some new and missing pieces to the table.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[8]

Some aspects of test automation were not included and I started a complementary
project to fi ll that gap, it was consequently named Electron . And although positron
is the anti-particle of the electron, and they annihilate if they collide, take for granted
that that was not the idea, but more the conservation of energy and the generation of
some visible light and waves.

Later on, Electron entered the fi rst Android Development Challenge (ADC1)
in early 2008 and though it obtained a rather good score in some categories,
frameworks had no place in that competition. Should you be interested in the origin
of testing on Android, please fi nd some articles and videos that were published in
my personal blog (http://dtmilano.blogspot.com/search/label/electron).

By that time Unit Tests could be run on Eclipse. However, testing was not done on
the real target but on a JVM on the local development computer.

 Google also provided application instrumentation code through the
Instrumentation class. When running an application with instrumentation
turned on, this class is instantiated for you before any of the application code,
allowing you to monitor all of the interaction the system has with the application.
An Instrumentation implementation is described to the system through an
AndroidManifest.xml fi le.

During those early stages in the Android development evolution, I started writing
some articles in my blog fi lling the gaps on testing. This book is the evolution and
completion of that work in an orderly and understandable manner
to paradoxically let you be bitten by the Android testing bug.

Software bugs
It doesn't matter how hard you try and how much time you invest in design and
even how careful you are when programming, mistakes are inevitable and bugs
will appear.

Bugs and software development are intimately related. However, the term bugs to
describe fl aws, mistakes, or errors has been used in hardware engineering many
decades before even computers were invented. Notwithstanding the story about the
term 'bug' coined by Mark II operators at Harvard University, Thomas Edison wrote
this in 1878 in a letter to Puskás Tivadar showing the early adoption of the term:

"It has been just so in all of my inventions. The fi rst step is an intuition, and
comes with a burst, then diffi culties arise—this thing gives out and [it is] then
that 'Bugs'—as such little faults and diffi culties are called—show themselves
and months of intense watching, study and labor are requisite before commercial
success or failure is certainly reached."

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[9]

How bugs severely affect your projects
Bugs affect many aspects of your software development project and it is clearly
understood that the sooner in the process you fi nd and squash them, the better.
It doesn't matter if you are developing a simple application to publish on the
Android Market, re-branding the Android experience for an operator, or creating
a customized version of Android for a device manufacturer, bugs will delay your
shipment and will cost you money.

From all of the software development methodologies and techniques, Test Driven
Development , an agile component of the software development process, is likely the
one that forces you to face your bugs earlier in the development process and thus it
is also likely that you will solve more problems up front.

Furthermore, the increase in productivity can be clearly appreciated in a project
where a software development team uses this technique versus one that is, in the
best of cases, writing tests at the end of the development cycle. If you have been
involved in software development for the mobile industry, you will have reasons to
believe that with all the rush this stage never occurs. It's funny because, usually, this
rush is to solve problems that could have been avoided.

 In a study conducted by the National Institute of Standards and Technology (USA)
in 2002, it was reported that software bugs cost the economy $59.5 billion annually.
More than a third of this cost could be avoided if better software testing was
performed.

But please, don't misunderstand this message. There are no silver bullets in
software development and what will lead you to an increase in productivity and
manageability of your project is discipline in applying these methodologies and
techniques to stay in control.

Why, what, how, and when to test
You should understand that early bug detection saves a huge amount of project
resources and reduces software maintenance costs. This is the best known reason to
write software tests for your development project. Increased productivity will soon
be evident.

Additionally, writing the tests will give you a deeper understanding of the
requirements and the problem to be solved. You will not be able to write tests
for a piece of software you don't understand.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[10]

This is also the reason behind the approach of writing tests to clearly understand
legacy or third party code and having the ability to confi dently change or update it.

The more the code covered by your tests, the higher would be your expectations
of discovering the hidden bugs.

If during this coverage analysis you fi nd that some areas of your code are not
exercised, additional tests should be added to cover this code as well.

This technique requires a special instrumented Android build to collect probe data
and must be disabled for any release code because the impact on performance could
severely affect application behavior.

To fi ll this gap, enter EMMA (http://emma.sourceforge.net/), an open-source
toolkit for measuring and reporting Java code coverage, that can offl ine instrument
classes for coverage. It supports various coverage types:

 class
 method
 line
 basic block

Coverage reports can also be obtained in different output formats. EMMA is
supported to some degree by the Android framework and it is possible to build an
EMMA instrumented version of Android.

We will be analyzing the use of EMMA on Android to guide us to full test coverage
of our code in Chapter 10, Alternative Testing Tactics.

 This screenshot shows how an EMMA code coverage report is displayed in the
Eclipse editor, showing green lines where the code has been tested, provided the
corresponding plugin is installed.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[11]

Unfortunately, the plugin doesn't support Android tests yet, so right now you can
only use it for your JUnit tests. An Android coverage analysis report is only available
through HTML.

Tests should be automated, and you should run some or all of them every time you
introduce a change or addition to your code, in order to ensure that all the previous
conditions are still met and that the new code still satisfi es the tests as expected.

This leads us to the introduction of Continuous Integration , which will be discussed
in detail in Chapter 8, Continuous Integration. This relies on the automation of tests
and building processes.

If you don't use automated testing, it is practically impossible to adopt Continuous
Integration as part of the development process and it is very diffi cult to ensure that
changes do not break existing code.

What to test
 Strictly speaking you should test every statement in your code but this also depends
on different criteria and can be reduced to test the path of execution or just some
methods. Usually there is no need to test something that can't be broken, for example
it usually makes no sense to test getters and setters as you probably won't be
testing the Java compiler on your own code and the compiler would have already
performed its own tests.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[12]

In addition to the functional areas you should test, there are some specifi c areas of
Android applications that you should consider. We will be looking at these in the
following sections.

Activity lifecycle events
 You should test that your activities handle lifecycle events correctly.

If your activity should save its state during onPause() or onDestroy() events and
later restore it in onCreate(Bundle savedInstanceState), you should be able to
reproduce and test these conditions and verify that the state was correctly saved and
restored.

Confi guration-changed events should also be tested as some of these events cause
the current Activity to be recreated, and you should test for correct handling of the
event and that the newly created Activity preserves the previous state. Confi guration
changes are triggered even by rotation events, so you should test your application's
ability to handle these situations.

Database and fi lesystem operations
 Database and fi lesystem operations should be tested to ensure that they are handled
correctly. These operations should be tested in isolation at the lower system level, at
a higher level through ContentProviders , and from the application itself.

To test these components in isolation, Android provides some mock objects in the
android.test.mock package.

Physical characteristics of the device
 Well before delivering your application you should be sure that all of the different
devices it can be run on are supported or at the least you should detect the situation
and take appropriate measures.

Among other characteristics of the devices, you may fi nd that you should test:

 Network capabilities
 Screen densities
 Screen resolutions
 Screen sizes
 Availability of sensors

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[13]

 Keyboard and other input devices
 GPS
 External storage

In this respect Android Virtual Devices play an important role because it is
practically impossible to have access to all possible devices with all of the possible
combinations of features but you can confi gure AVD for almost every situation.
However, as was mentioned before, save your fi nal testing for actual devices where
real users will run the application to understand its behavior.

Types of tests
Testing can be implemented at any time in the development process, depending on
the method employed. However, we will be promoting testing at an early stage of
the development effort, even before the full set of requirements have been defi ned
and the coding process has been started.

There are several types of test available depending on the object being tested.
Regardless of its type, a test should verify a condition and return the result of this
evaluation as a single Boolean value indicating success or failure.

Unit tests
 Unit tests are software tests written by programmers for programmers in a
programming language and they should isolate the component under test and be
able to test it in a repeatable way. That's why unit tests and mock objects are usually
placed together. You use mock objects to isolate the unit from its dependencies, to
monitor interactions, and also to be able to repeat the test any number of times. For
example, if your test deletes some data from a database you probably don't want the
data to be actually deleted and not found the next time the test is run.

JUnit is the de-facto standard for unit tests on Android. It's a simple open source
framework for automating unit testing, originally written by Erich Gamma and
Kent Beck.

Android (up to Android 2.3 Gingerbread) uses JUnit 3 . This version doesn't use
annotations and uses introspection to detect the tests.

A typical JUnit test would look something like this (the actual tests are highlighted):

/**
 * Android Application Testing Guide
 */
package com.example.aatg.test;

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[14]

import JUnit.framework.TestCase;

/**
 * @author diego
 */
public class MyUnitTests extends TestCase {
 private int mFixture;

/**
 * @param name test name
 */
 public MyUnitTests(String name) {
 super(name);
 }

/* (non-Javadoc)
 * @see JUnit.framework.TestCase#setUp()
 */
 protected void setUp() throws Exception {
 super.setUp();
 mFixture = 1234;
 }

/* (non-Javadoc)
 * @see JUnit.framework.TestCase#tearDown()
 */
 protected void tearDown() throws Exception {
 super.tearDown();
 }

/**
 * Preconditions
 */
 public void testPreconditions() {
 }

/**
 * Test method
 */
 public void testSomething() {
 fail("Not implemented yet");
 }
}

Downloading the example code
You can download the example code fi les for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the fi les e-mailed directly to you.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[15]

The following sections explain in detail the components that build up our test case.

The test fi xture
 A test fi xture is the well known state defi ned as a baseline to run the tests and is
shared by all the test cases, and thus plays a fundamental role in the design of the
tests.

Generally it is implemented as a set of member variables and, following Android
conventions, they will have names starting with m, for example mActivity.
However, it can also contain external data, as specifi c entries in a database or fi les
present in the fi lesystem.

The setUp() method
 This method is called to initialize the fi xture.

Overriding it you have the opportunity to create objects and initialize fi elds that
will be used by tests. It's worth noting that this setup occurs before every test.

The tearDown() method
 This method is called to fi nalize the fi xture.

Overriding it you can release resources used by the initialization or tests. Again,
this method is invoked after every test.

For example, you can release a database or a network connection here.

JUnit is designed in such a way that the entire tree of test instances is built in one
pass, and then the tests are executed in a second pass. Therefore, the test runner
holds strong references to all Test instances for the duration of the test execution.
This means that for very large and very long test runs with many Test instances,
none of the tests may be garbage collected until the end of the entire test run. This is
particularly important in Android and when testing on limited devices as some tests
may fail not because of an intrinsic problem but because of the amount of memory
needed to run the application plus its tests exceeding the device limits.

Therefore, if you allocate external or limited resources in a test, such as Services or
ContentProviders, you are responsible for freeing those resources. Explicitly setting
an object to null in the tearDown() method, for example, allows it to be garbage
collected before the end of the entire test run.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[16]

Test preconditions
Usually there is no way to test for preconditions as the tests are discovered
using introspection and their order could vary. So it's customary to create a
testPreconditions() method to test for preconditions. Though there is no
assurance that this test will be called in any specifi c order, it is good practice to keep
this and the preconditions together for organizational purposes.

The actual tests
 All public void methods whose names start with test will be considered as a
test. JUnit 3, as opposed to JUnit 4, doesn't use annotations to discover the tests
but introspection to fi nd their names. There are some annotations available on the
Android test framework such as @SmallTest, @MediumTest, and @LargeTest, but
they don't turn a simple method into a test. Instead they organize them in different
categories. Ultimately you will have the ability to run tests for a single category using
the test runner.

As a rule of thumb, name your tests in a descriptive way using nouns and the
condition being tested.

For example: testValues(), testConversionError(),
testConversionToString() are all valid test names.

Test for exceptions and wrong values instead of just testing for positive cases.

During the execution of the test some conditions, side effects, or method returns
should be compared against the expectations. To ease these operations, JUnit
provides a full set of assert* methods to compare the expected results from the test
to the actual results after running with them throwing exceptions if conditions are
not met. Then the test runner handles these exceptions and presents the results.

These methods, which are overloaded to support different arguments, include:

 assertEquals()

 assertFalse()

 assertNotNull()

 assertNotSame()

 assertNull()

 assertSame()

 assertTrue()

 fail()

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[17]

In addition to these JUnit assert methods, Android extends Assert in two specialized
classes providing additional tests:

 MoreAsserts

 ViewAsserts

Mock objects
 Mock objects are mimic objects used instead of calling the real domain objects to
enable testing units in isolation.

Generally, this is done to ensure that correct methods are called but they can also be
of help, as mentioned, to isolate your tests from the surrounding universe and enable
you to run them independently and repeatably.

The Android testing framework supports several mock objects that you will fi nd
very useful when writing your tests but you will need to provide some dependencies
to be able to compile the tests.

Several classes are provided by the Android testing framework in the android.
test.mock package:

 MockApplication

 MockContentProvider

 MockContentResolver

 MockContext

 MockCursor

 MockDialogInterface

 MockPackageManager

 MockResources

Almost any component of the platform that could interact with your Activity can be
created by instantiating one of these classes.

However, they are not real implementations but stubs where every method
generates an UnsupportedOperationException and that you can extend to
create real mock objects.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[18]

UI tests
 Finally, special consideration should be taken if your tests involve UI components.
As you may have already known, only the main thread is allowed to alter the UI
in Android. Thus a special annotation @UIThreadTest is used to indicate that a
particular test should be run on that thread and would have the ability to alter the
UI. On the other hand, if you only want to run parts of your test on the UI thread,
you may use the Activity.runOnUiThread(Runnable r) method providing the
corresponding Runnable containing testing instructions.

A helper class TouchUtils is also provided to aid in the UI test creation allowing
the generation of events to send to the Views, such as:

 click
 drag
 long click
 scroll
 tap
 touch

By these means you can actually remote control you application from the tests.

Eclipse and other IDE support
 JUnit is fully supported by Eclipse and the Android ADT plugin lets you create
Android testing projects. Furthermore, you can run the tests and analyze the results
without leaving the IDE.

This also provides a more subtle advantage; being able to run the tests from Eclipse
allows you to debug the tests that are not behaving correctly.

In the screenshot, we can see how Eclipse runs 18 tests taking 20.008 seconds, where
0 Errors and 0 Failures were detected. The name of each test and its duration is
also displayed. If there was a failure, the Failure Trace would show the related
information.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[19]

Other IDEs like ItelliJ and Netbeans have plugins integrating Android development
to some degree but they are not offi cially supported.

Even if you are not developing in an IDE, you can fi nd support to run the tests with
ant (check http://ant.apache.org if you are not familiar with this tool). This setup
is done by the android command using the subcommand create test-project as
described by this help text:

$ android --help create test-project

Usage:

 android [global options] create test-project [action options]

Global options:

 -v --verbose Verbose mode: errors, warnings and informational messages
are printed.

 -h --help Help on a specific command.

 -s --silent Silent mode: only errors are printed out.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[20]

Action "create test-project":

 Creates a new Android project for a test package.

Options:

 -p --path The new project's directory [required]

 -m --main Path to directory of the app under test, relative to the
test project directory [required]

 -n --name Project name

As indicated by the help you should provide at least the path to the project (--path)
and the path to the main project or the project under test (--main).

Integration tests
 Integration tests are designed to test the way individual components work jointly.
Modules that have been unit tested independently are now combined together to
test the integration.

Usually Android Activities require some integration with the system infrastructure
to be able to run. They need the Activity lifecycle provided by the ActivityManager,
and access to resources, fi lesystem, and databases.

The same criteria apply to other Android components like Services or
ContentProviders that need to interact with other parts of the system to achieve
their function.

In all these cases there are specialized tests provided by the Android testing
framework that facilitate the creation of tests for these components.

Functional or acceptance tests
 In agile software development, functional or acceptance tests are usually created by
business and Quality Assurance (QA) people and expressed in a business domain
language. These are high level tests to test the completeness and correctness of a
user requirement or feature. They are created ideally through collaboration between
business customers, business analysts, QA, testers, and developers. However the
business customers (product owners) are the primary owners of these tests.

Some frameworks and tools can help in this fi eld, most notably FitNesse (http://
www.fitnesse.org), which can be easily integrated, up to a point, into the Android
development process and will let you create acceptance tests and check their results.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[21]

Also check Fit, http://fit.c2.com and Slim (Simple List Invocation
Method), http://fitnesse.org/FitNesse.UserGuide.SliM, as
an alternative to Fit.

 Lately, a new trend named Behavior Driven Development has gained some
popularity and in a very brief description can be understood as the evolution of Test
Driven Development. It aims to provide a common vocabulary between business
and technology people in order to increase mutual understanding.

 Behavior Driven Development can be expressed as a framework of activities based
on three principles (more information can be found at http://behaviour-driven.
org):

 Business and technology should refer to the same system in the same way
 Any system should have an identifi ed, verifi able value to the business
 Upfront analysis, design, and planning all have a diminishing return

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[22]

To apply these principles, business people are usually involved in writing test
case scenarios in a high level language and use some tool, such as jbehave
(http://jbehave.org). In the following example, these scenarios are translated
into code that expresses the same test scenario in a programming language.

Test case scenario
 As an illustration of this technique here is an oversimplifi ed example.

This scenario is:

Given I'm using the Temperature Converter.
When I enter 100 into Celsius field.
Then I obtain 212 in Fahrenheit field.

It would be translated into something similar to:

@Given("I am using the Temperature Converter")
public void createTemperatureConverter() {
 // do nothing
}

@When("I enter $celsius into Celsius field")
public void setCelsius(int celsius) {
 mCelsius= celsius;
}

@Then("I obtain $fahrenheit in Fahrenheit field")
public void testCelsiusToFahrenheit(int fahrenheit) {
 assertEquals(fahrenheit,
 TemperatureConverter.celsiusToFahrenheit
 (mCelsius));
}

Performance tests
 Performance tests measure performance characteristics of the components in a
repeatable way. If performance improvements are required by some part of the
application, the best approach is to measure performance before and after some
change is introduced.

As is widely known, premature optimization does more harm than good, so it is
better to clearly understand the impact of your changes on the overall performance.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[23]

 The introduction of the Dalvik JIT compiler in Android 2.2 changed some
optimization patterns that were widely used in Android development. Nowadays,
every recommendation about performance improvements on the Android
developer's site is backed up by performance tests.

System tests
 The system is tested as a whole and the interaction between the components,
software and hardware, is exercised. Normally, system tests include additional
classes of tests like:

 GUI tests
 Smoke tests
 Performance tests
 Installation tests

Android testing framework
 Android provides a very advanced testing framework extending the industry
standard JUnit with specifi c features suitable for implementing all of the testing
strategies and types we mentioned before. In some cases, additional tools are needed
but the integration of these tools is in most cases simple and straightforward.

The key features of the Android testing environment include:

 Android extensions to the JUnit framework that provide access to Android
system objects.

 An instrumentation framework that lets tests control and examine the
application.

 Mock versions of commonly used Android system objects.
 Tools for running single tests or test suites, with or without instrumentation.
 Support for managing tests and test projects in the ADT Plugin for Eclipse

and at the command line.

Instrumentation
 The instrumentation framework is the foundation of the testing framework.
Instrumentation controls the application under test and permits the injection of mock
components required by the application to run. For example, you can create mock
Contexts before the application starts and let the application use them.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[24]

All interaction of the application with the surrounding environment can be
controlled using this approach. You can also isolate your application in a restricted
environment to be able to predict the results, forcing the values returned by
some methods or mocking persistent and unchanged data for ContentProvider,
databases, or even the fi lesystem content.

A standard Android project has its tests in a correlated project that usually
has the same project name but ends with Test. Inside this Test project, the
AndroidManifest.xml declares the Instrumentation.

As an illustrative example, assume your project has a manifest like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.aatg.sample"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".SampleActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="7" />
</manifest>

In this case, the correlated Test project will have the following
AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.aatg.sample.test"
 android:versionCode="1" android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <uses-library android:name="android.test.runner" />
 </application>
 <uses-sdk android:minSdkVersion="7" />
 <instrumentation
 android:targetPackage="com.example.aatg.sample"

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Chapter 1

[25]

 android:name="android.test.InstrumentationTestRunner"
 android:label="Sample Tests" />
 <uses-permission android:name="
 android.permission.INJECT_EVENTS" />
</manifest>

Here the Instrumentation package is the same package as the main application with
the .test suffi x added.

 Then the Instrumentation is declared specifying the target package and
the test runner, in this case the default custom runner android.test.
InstrumentationTestRunner.

Also notice that both, the application under test and the tests are Android
applications with their corresponding APKs installed. Internally, they will be
sharing the same process and thus have access to the same set of features.

 When you run a test application, the Activity Manager (http://developer.
android.com/intl/de/reference/android/app/ActivityManager.html) uses the
instrumentation framework to start and control the test runner, which in turn uses
instrumentation to shut down any running instances of the main application, starts the
test application, and then starts the main application in the same process. This allows
various aspects of the test application to work directly with the main application.

Test targets
 During the evolution of your development project your tests would be targeted to
different devices. From the simplicity, fl exibility, and speed of testing on an emulator
to the unavoidable fi nal testing on the specifi c devices you intend your application to
be run on, you should be able to run on all of them.

There are also some intermediate cases like running your tests on a local JVM virtual
machine on the development computer or on a Dalvik virtual machine or Activity,
depending on the case.

Every case has its pros and cons, but the good news is that you have all of these
alternatives available to run your tests.

The emulator is probably the most powerful target as you can modify almost
every parameter from its confi guration to simulate different conditions for your
tests. Ultimately, your application should be able to handle all of these situations,
so it is much better to discover the problems upfront than when the application has
been delivered.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Getting Started with Testing

[26]

The real devices are a requirement for performance tests, as it is somewhat diffi cult
to extrapolate performance measurements from a simulated device. You will
discover the real user experience only when using the real device. Rendering,
scrolling, fl inging, and other cases should be tested before delivering the application.

Summary
We have reviewed the main concepts behind testing in general and Android in
particular. Having acquired this knowledge will let us start our journey and start
exploiting the benefi ts of testing in our software development projects.

So far, we have visited the following subjects:

 We reviewed the early stages of testing on Android and mentioned some
of the frameworks that created the current alternatives.

 We briefl y analyzed the reasons behind testing and the whys, whats, hows,
and whens of it. Furthermore, from now on we will concentrate on exploring
the hows, as we can assume that you are convinced by the arguments
presented.

 We enumerated the different and most common types of tests you would
need in your projects, described some of the tools we can count on our
testing toolbox, and provided an introductory example of a JUnit unit test to
better understand what we are discussing.

We also analyzed these techniques from the Android perspective and mentioned the
use of Instrumentation to run our Android tests.

Now we will start analyzing the mentioned techniques, frameworks, and tools in
detail, along with examples of their usage.

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book

Where to buy this book
You can buy Android Application Testing Guide from the Packt Publishing website:
http://www.packtpub.com/android-application-testing-

guide/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.PacktPub.com/android-application-testing-guide/book

http://www.packtpub.com/android-application-testing-guide/book
http://www.packtpub.com/Shippingpolicy

